磨料磨具网_久久精品国产一区二区_磨料磨具行业B2B门户开创者

您好 歡迎來到磨料磨具網  | 免費注冊
遠發信息:磨料磨具行業的一站式媒體平臺磨料磨具行業的一站式媒體平臺
手機資訊手機資訊
官方微信官方微信

航發葉片前后緣數控砂帶磨削關鍵技術研究

2018-06-22 10:20:34|應用技術|來源 中國磨料磨具網
摘要 張明德,蔡漢水,謝樂,羅沖重慶理工大學機械工程學院,重慶400054摘要:為提高航發葉片前后緣加工精度和加工效率,通過對當前航發葉片前后緣磨削加工中存在的問題進行分析,結合當前葉片...

張明德, 蔡漢水, 謝樂, 羅沖

重慶理工大學 機械工程學院, 重慶 400054

摘要: 為提高航發葉片前后緣加工精度和加工效率,通過對當前航發葉片前后緣磨削加工中存在的問題進行分析,結合當前葉片前后緣加工工藝要求及數控砂帶磨床各軸運動控制算法,考慮到磨料粒度、接觸力、砂帶線速度及進給速度等磨削要素的影響,優化了刀具軌跡,提出了葉片前后緣磨削工藝方法。最后,對某公司生產的航發葉片進行了磨削加工實驗,實驗結果表明,此磨削加工方法可使得航發葉片前后緣的加工精度和表面粗糙度得到明顯的改善。

關鍵詞:航發葉片 前后緣  運動控制算法  磨削要素 工藝方法    

 

  航空發動機葉片(簡稱航發葉片)前后緣對航空發動機的推力、燃油效率、使用壽命等性能指標都起著關鍵作用[1-3]。航發葉片作為形狀復雜的薄壁零件, 葉片前后緣圓弧曲率變化極大、加工余量分布極不均勻, 極易造成前后緣過磨現象, 使得葉片達不到實際加工要求[4-5]。因此, 研究航發葉片前后緣數控砂帶磨削技術對提高航發葉片加工質量及效率具有重要意義。

  目前, 國內外有不少學者和技術人員研究葉片數控砂帶磨削技術并取得了較好的應用成果[6-7]。李小彪等[8]為實現砂帶拋光力的實時控制及提高航發葉片表面自動化拋光質量, 提出了航發葉片砂帶拋光力控制技術; 黃云等[9]通過比較國內外砂帶磨削技術的差距, 提出了包括新型砂帶研制、高端精密高效砂帶磨床研制等促進我國砂帶磨削技術發展的新技術; Sarma等[10]針對數控磨削加工道路軌跡生成進行了研究, 提出了一種綜合考慮制造與測量的軌跡生成方法, 使得表面粗糙度的加工前預測成為可能。以上學者對葉片型面的加工工藝進行了深入的分析, 為解決以葉片為代表的自由曲面砂帶精密磨削提供理論支持, 但上述研究目前處于理論研究階段, 尚未應用于實際加工[11-12]。

   為解決航發葉片前后緣加工質量問題, 本文在以上研究的基礎上, 展開航發葉片前后緣數控砂帶磨削關鍵技術研究, 并通過磨削試驗驗證其方法的可行性, 得到較好的前后緣輪廓度及較高的表面質量, 并提高了前后緣的加工效率。

  1 葉片前后緣磨削工藝分析

  數控砂帶磨削加工作為航發葉片前后緣最終成形的一種加工方式, 不僅要有效的提高前后緣的粗糙度, 更要滿足前后緣輪廓度及表面加工質量。隨著航空發動機性能指標的提高, 航發葉片的加工已由單一的尺寸精度要求, 發展為尺寸和表面質量并重的精密加工要求。新型航發葉片采用超音速、三元流設計, 葉片前后緣形狀由圓弧狀發展為高階拋物線形。葉片前后緣的輪廓精度和尺寸精度要求更加嚴格, 通常要求前后緣尺寸精度為-0.03~+0.05 mm, 表面粗糙度小于0.35 μm, 且不接受偏頭、方頭、尖頭、縮頸等不規則形狀(如圖 1所示)。但是, 由于模具的變形與磨損、銑削加工時切削力的變化、裝夾誤差等加工誤差的存在,葉片前后緣加工余量易出現分布不均勻的現象(如圖 2所示), 對數控磨削加工造成了相當大的困難。若采用目前恒定參數的磨削加工方式, 易出現無效與過量磨削, 導致加工效率低, 甚至出現葉片前后緣超差報廢的現象。

1529635123103642.png

圖 1 典型的航發葉片前后緣不規則形狀

1529635151114503.png

圖 2 航發葉片前后緣余量示意圖

  為解決航發葉片前后緣余量分布不均勻的磨削技術難題, 提出了葉片前后緣數控砂帶磨削加工方案。首先, 根據三坐標測量數據, 進行相應軟件開發, 實現航發葉片模型重構; 通過與理論模型進行對比得到刀觸點處加工余量; 其次基于所得加工余量信息, 優化加工余量分布, 考慮磨料粒度、接觸力、砂帶線速度、進給速度等磨削要素的影響, 建立材料去除模型; 基于數控砂帶磨床的結構與各軸運動控制算法, 實現磨削數控程序的編制; 最后, 完成航發葉片前后緣加工成型。

  2 航發葉片模型重構與余量提取

  對于曲面較為復雜的航發葉片而言, 在逆向過程中, 不同的測量方法往往對應著不同的曲面重構方法。首先采用如圖 3所示的三坐標測量機, 對待加工航發葉片進行測量, 得到各截面線上有規律的離散點云數據, 以C++編程語言為工具, 通過曲面重構算法, 擬合得到非均勻有理B樣條曲面。并通過對比實測模型與理論模型, 求取刀觸點處的加工余量。

1529635207128841.png

圖3 三坐標機測量

  2.1 模型重構

  目前, 在模型逆向重構工程中, B樣條曲線曲面由于具有幾何不變性、保凸性、局部支撐性及變差減小性等優點而被廣泛采用[13-15]。其中, 非均勻有理B樣條非均勻性是指其節點參數沿參數軸的分布是不等距的; 有理性是指其控制曲線上的權因子可以取不同的值。因此, 其具有統一表達自由曲線曲面和解析曲線曲面的優點。與低次B樣條曲線相比較, 高次B樣條曲線的光滑性較高, 如m次B樣條曲線可以保證m-1階的連續, 但曲線與特征多邊形的逼近程度較差。由于高次B樣條曲線非零區間的擴大, 局部性的優點將逐漸減弱, 而且冪次越高, 計算量也越大。故采用三次非均勻有理B樣條曲線曲面算法進行模型重構。

  三坐標測量機采集的點云中, 共有r+1條截面線, 每條截面線有s+1個數據點, 有(r+1)×(s+1)個控制頂點陣列Vi, j(i=0, 1…r; j=0, 1, …s), 即可構成一張特征網格。則有一張3×3次張量積非均勻有理B樣條曲面

062210.png(1)

  式中:r=n+3+1;s=m+3+1;Vi,j為控制頂點; Wi, j為權因子; Bi, 3(u)和Bj, 3(u)分別為沿u向和v向的3次B樣條基函數。

  通過讀取三坐標測量機采集的原始數據, 得到一系列封閉的離散點集。并對各截面離散點集進行擬合, 生成一系列三次非均勻有理B樣條曲線, 為提高重構的精度, 有目的地離散各截面曲線, 得到新的點集, 并根據新的離散點集實現曲面重構, 圖 4為利用葉片截面檢測數據擬合的非均勻有理B樣條曲面模型。

1529635235117894.png

圖4 三坐標機測量點云重構曲面

  2.2 刀觸點余量計算

  在實際加工過程中, 不同特征的零件以及加工要求的不同, 都會導致加工軌跡方式的不同。根據航發葉片的曲面特征及加工要求, 一般采用參數線法進行磨削加工。將uv參數曲線離散化, 在理論模型上獲得刀觸點坐標, 將實測模型與理論模型進行匹配, 再通過求取葉片理論模型上待加工區域的刀觸點沿法矢方向到重構模型的距離來獲取葉片加工余量。

  通過比對葉片型面上的邊、角及孔等特征確定大致的旋轉及平移參數, 再對比葉片型面上的點集, 計算位置偏離, 獲取精確地旋轉參數矩陣R及平移參數矩陣T。為此, 可建立數學模型如下:

062212.png (2)

062213.png(3)

  式中:n′為重構曲面上的特征點; n為理論曲面對應點; Q′i (i=1, 2, …, n)為重構曲面上的點集; Qi為理論模型上的對應點集。

  在理論模型取得n個刀觸點Pi及對應法向矢量n i, 構造沿法矢方向直線Li為

062214.png(4)

  式中ξ為直線參數。

  直線與實際模型的曲面相交于一點Qi, 交點與刀觸點之間的距離即為余量Wi。

062215.png(5)

  最后, 對比重構曲面與理論模型計算余量得到如表 1所示結果, 并得到余量分布圖如圖5所示。


表1 理論與實測模型刀觸點及對應余量計算

062216.png

1529635315434491.png

圖5 某型號葉片加工前后緣區域余量分布圖

  3 磨削算法研究

  基于上述研究, 根據所得到的待加工葉片刀觸點處的加工余量, 對于磨削算法進一步優化, 實現對航發葉片前后緣磨削加工, 從而提高加工精度和生產效率。

  3.1 磨削機床結構與各軸運動

  如下圖 6所示, 為某七軸聯動數控砂帶磨床機構原理示意圖, 該砂帶磨床主要結構有:機床床身、立柱、磨頭機構以及各運動控制軸部件等組成。為實現磨削拋光加工要求, 機床要實現如下運動:機床左右、前后、上下方向的直線運動(X、Y、Z軸)、繞X、Y、Z軸方向的旋轉運動(A、B、C軸)、伺服電機對接觸輪的壓力調節(N軸), 同時采用磨頭單懸臂的結構方式。

1529635411110570.png

圖6 七軸聯動數控砂帶磨床結構原理圖

  該機床主要針對砂帶磨削加工,采用雙擺頭的砂帶磨削機構保證磨頭的支撐方向和葉片曲面的法矢方向一致、使得磨頭的接觸輪軸線和葉片刀觸點的主曲率方向一致, 從而得到磨削加工的最佳位姿。

  以葉片理論型面為基準, 建立工件坐標系OpXpYpZp, 與機床坐標系OwXwYwZw保持相同姿態, 獲取曲面各點的坐標和法矢, 用矩陣表示分別是P0=[X0, Y0, Z0, 1]T,N0=[Nx0, Ny0, Nz0, 0]T。若設定刀具初始姿態向量為W0=[0,0,0,1]T, 為滿足C軸回轉軸線與葉片型面刀觸點處法矢同向, 需使工件所處裝夾卡盤繞X軸旋轉A角, 繞Y軸旋轉B角, 如圖 7所示。

1529635453107411.png

圖7 數控機床回轉軸動作調整過程

  其中,

062220.png(6)

  因此, 可以得到A、B兩角的求解公式。

  為獲取B角數值, 需要知道葉片繞X軸旋轉A角后, 刀觸點處的法矢N1在工件坐標系OpXpYpZp下所處的姿態。由此可知, N1=Rot(X, A)×N0, 聯立公式可得

062221.png(7)

  由C軸回轉軸線與葉片型面刀觸點處法同向可知,

062222.png(8)

  若設定初始狀態下接觸輪軸線的姿態為T0=[1,0,0,0]T, 刀觸點處切矢的姿態為U0=[Ux0, Uy0, Uz0, 0]T。要滿足接觸輪軸線與葉片型面刀觸點處主曲率方向同向, 必須使接觸輪繞Z軸旋轉一個C角。因此, 需要知道葉片繞X軸旋轉A角和繞Y軸旋轉B角之后, 刀觸點處切矢在工件坐標系OpXpYpZp所處的姿態U1。由此可知,U1=Rot(Y, B)×Rot(X, A)×U0。因為刀觸點處的法矢n與切矢τ垂直, 而且刀具軸線垂直于XOY平面, 所以, 當刀觸點處的法矢n與刀具軸線平行時, 切矢τ一定位于XOY平面內。由此U1=[Ux1, Uy1, Uz1, 0]T=[Ux1,Uy1, 0, 0]T。

  那么

062223.png(9)

  刀具按照預定的軌跡進行運動在一定程度上能保證葉片加工精度, 同時也有助于磨削效率的提高。因此, 精確計算出刀觸點投影變換后的坐標值顯得尤為重要。由于A軸和B軸的運動, 葉片型面上各點在工件坐標系OpXpYpZp中位置也會發生相應的改變。首先, 求解出旋轉后葉片上各點在工件坐標系OpXpYpZp的坐標值, 用矩陣表示為P1=[X1,Y1, Z1, 1]T。然后, 建立工件坐標系OpXpYpZp與機床坐標系OwXwYwZw之間的關系, 經過坐標變換, 求解出刀觸點在機床坐標系中的坐標值, 用矩陣表示為P=[X, Y, Z, 1]T。最后, 通過機床各軸的聯動使接觸輪與刀觸點保持最佳接觸狀態。那么P=Trans(Xh, Yh, Zh)×Rot(Y, B)×Rot(X, A)×P0。

  因此,

062224.png(10)

  3.2 算法實現

  基于上述機床, 本文對于目前的磨削運動控制算法進行了深入的研究。對于航發葉片而言, 在加工過程中, 由于應力分布不均及裝夾誤差等因素的存在, 其磨削余量極易出現分布不均勻。在相同的刀路軌跡中, 刀觸點越少, 加工效率也就越高, 故可以根據加工余量減少已經合格的刀觸點, 重新生成待加工區域, 實現加工余量的磨削加工。

  對于航發葉片而言, 在磨削過程中, 磨料粒度、接觸力、砂帶線速度及葉片進給速度等磨削要素對葉片表面的去除率有著顯著影響。其中, 接觸力、砂帶線速度及葉片進給速度分別為:0~15 N, 7.5~21 m/s,17~23 mm/s。根據以上各參數的范圍, 可以得出去除量的范圍Wmin~Wmax, 從加工效率角度考慮, 以Wmax對應的磨削參數為最優。對于任一刀觸點, 如若磨削參數不變, 則磨削量為一定值, 則走刀次數為

062225.png(11)

  若ni>1, 則通過定量磨削, 使得不合格刀觸點處的加工余量Wi在0~Wmax范圍內。

062226.png(12)

  針對諸多磨削要素, 建立材料去除量的模型為

062227.png(13)

  式中:C為修正系數; Vb為砂帶線速度; Vf為葉片進給速度; Fp為接觸輪受到的壓力。

  根據相關實驗數據如表 2所示, 基于正交實驗法, 得出各參數對磨削量的影響, 并獲得葉片磨削材料去除模型為

062228.png(14)

表2 某航發葉片型面磨削實驗數據

062229.png

  在磨削加工過程中, 一般保持砂帶線速度及葉片進給速度恒定, 在已知每個刀觸點的加工余量的基礎上, 通過調整接觸輪壓力控制材料的去除量。但是, 在磨削過程中, 第七軸施加的載荷如果幅度過大, 會嚴重影響機床的結構穩定性及磨削效果。所以本文通過調整理論模型的姿態, 優化余量分布, 從而使得加工余量盡可能均勻分布, 使得第七軸施加的載荷變化趨于平緩。

  在調整理論模型姿態過程中, 主要存在6個變量:沿X, Y, Z軸的平移量Tx, Ty, Tz, 及繞X, Y, Z軸旋轉量α, β, γ。則理論模型刀觸點經過旋轉、平移變換后為

062230.png(15)

  式中:cα為cosα; sα為sinα。

  此時, 在實際模型上對應點為Q′i, 加工余量W′i。

  建立目標函數如下

062231.png(16)

  根據加工要求, 構造約束條件為

062232.png(17)

  式中:δ為局部誤差與全局誤差的數量級之差; W上偏、W下偏為加工余量上、下偏差值。

  通過以上算法, 得到理論模型與實際模型余量最優位姿。并將得到的角度轉化到數控機床上, 實現磨削加工。

  4 加工實驗

  本實驗旨在驗證本文提出的磨削方法及其算法的正確性, 利用上述開發的軟件生成相應的數控加工代碼對航空發動機葉片進行磨削加工。另外, 為了測試本算法的準確性和有效性, 選取了其中一種加工難度較大的葉片對其磨削前后的數據進行了分析, 并與三坐標測量結果進行了對比。如圖 8所示, 某航發葉片葉身型面磨削加工實驗。針對該葉片的類型以及葉身表面的殘余量, 根據相關實驗數據制定了如表 3所示的加工參數, 磨削前后緣對比圖如圖 9所示。

1529635573663851.png

圖8 某航發葉片型面磨削實驗

表3 某航發葉片實際磨削工藝參數

062234.png

1529635593942998.png

圖9 磨削前后緣比對圖

  為了驗證本文算法的準確性以及磨削結果的可靠性, 將上述結果與三坐標測量結果進行了對比, 如表 4所示為三坐標測量的本次實驗葉片磨削前后的各截面測量結果。

表4 某航空發動機葉片磨削前后三坐標測量結果

062236.png

  其中, 綠色曲線表示公差帶, 紅色區域表示實測型線。由表 4中磨削前的測量結果可知, 該葉片邊緣余量分布極不均勻, 且磨削后殘余量都在公差范圍內, 其中合格區域的殘余量也并未發生太大的改變, 超差區域的殘余量也分布在+0.01 mm~+0.045 mm之間。由此可知, 本文提出的磨削方法和磨削算法能夠準確地區分合格區域和超差區域, 并能根據超差區域殘余量的不同,自動調節磨削壓力使葉身邊緣加工精度在誤差允許的范圍內。

  5 結論

  本文使用三坐標測量機作為測量工具, 得到了高精度航發葉片點云, 根據航發葉片曲面特征, 以非均勻有理三次B樣條曲線曲面算法擬合曲面模型, 并且測得與理論模型沿法矢方向的刀觸點處的加工余量。根據各刀觸點的加工余量,優化了加工刀路軌跡, 實現了智能磨削加工。最后進行了實際加工實驗, 機床作業過程中并沒有出現刀具長時間滯留不前及刀軸位姿突變等加工缺陷, 磨削后航發葉片前后緣粗糙度及尺寸精度均達到了實際加工要求。

  參考文獻

  [1] 藺小軍, 王志偉, 張新鴿, 等. 基于點搜索組合曲面清根加工軌跡優化算法[J]. 機械工程學報, 2014,50(19): 191–198  

  Lin X J, Wang Z W, Zhang X G, et al.Improved algorithm for clean-up machining of combinatorial-surface model basedon point-searching method[J]. Journal of Mechanical Engineering, 2014, 50(19):191–198 (in Chinese) 

  [2] Park S C, Chang M. Tool path generation for a surface model withdefects[J]. Computers in Industry, 2010, 61(1): 75–82DOI:10.1016/j.compind.2009.07.003 

  [3] Liu Z Y, Huang Y, Wei H P, et al. Research on the technology of NCabrasive belt grinding for the leading and trailing edges of aero-engineblades[J]. Advanced Materials Research, 2013, 797: 67–72 DOI:10.4028/www.scientific.net/AMR.797 

  [4]吳海龍. 航空發動機精鍛葉片數控砂帶磨削工藝基礎研究[D]. 重慶: 重慶大學, 2012

  Wu H L. Basic research on CNC abrasive beltgrinding process of aero engine precision forged blade[D]. Chongqing:Chongqing University, 2012(in Chinese) 

  [5] 段繼豪, 史耀耀, 張軍峰, 等. 航空發動機葉片柔性拋光技術[J]. 航空學報, 2012,33(3): 573–578  

  Duan J H, Shi Y Y, Zhang J F, et al.Flexible polishing technology for blade of aviation engine[J]. Acta Aeronauticaet Astronautica Sinica, 2012, 33(3): 573–578 (in Chinese) 

  [6] 張明德, 王加林. 航空發動機葉片邊緣柔性拋磨技術研究[J]. 重慶理工大學學報(自然科學), 2015, 29(6): 32–36  

  Zhang M D, Wang J L. Research on flexiblepolishing technology for edge of aero-engine blade[J]. Journal of ChongqingInstitute of Technology (Natural Science), 2015, 29(6): 32–36 (in Chinese) 

  [7]劉維偉, 張定華, 史耀耀, 等. 航空發動機薄壁葉片精密數控加工技術研究[J]. 機械科學與技術, 2004, 23(3): 329–331  

  Liu W W, Zhang D H, Shi Y Y, et al. Studyon net-shape NC machinging technology of thin-blade of aeroengine[J].Mechanical Science and Technology, 2004, 23(3): 329–331 (in Chinese) 

  [8]李小彪, 史耀耀, 趙鵬兵, 等. 航空發動機葉片砂帶拋光力控制技術[J]. 計算機集成制造系統, 2012, 18(6): 1209–1214  

  Li X B, Shi Y Y, Zhao P B, et al. Polishingforce control technology of aero-engine blade in belt polishing[J]. ComputerIntegrated Manufacturing Systems, 2012, 18(6): 1209–1214 (in Chinese) 

  [9]黃云, 黃智. 砂帶磨削的發展及關鍵技術[J]. 中國機械工程, 2007,18(18): 2263–2267  

  Huang Y, Huang Z. Development and keytechnologies of abrasive belt grinding[J].ChinaMechanical Engineering, 2007,18(18): 2263–2267 (in Chinese) DOI:10.3321/j.issn:1004-132x.2007.18.030 

  [10]Sarma R, Dutta D. Tool path generation for NCgrinding[J]. International Journal of Machine Tools and Manufacture, 1998,38(3): 177–195 DOI:10.1016/S0890-6955(97)00040-0 

  [11]朱凱旋, 陳延君, 黃云, 等. 葉片型面砂帶磨削技術的現狀和發展趨勢[J]. 航空制造技術, 2007: 102–104  

  Zhu K X, Chen Y J, Huang Y, et al. Presentstatus and development trend of abrasive belt grinding technique for bladeprofile[J]. Aeronautical Manufacturing Technology, 2007: 102–104 (inChinese) 

  [12]劉樹生, 楊建中. 葉片六軸聯動數控砂帶磨床與數控砂帶磨削單元化[J]. 航空制造技術, 2010:32–37  

  Liu S S, Yang J Z. 6-Axis hybrid NCbelt-grinding machine for blade and unitization of NC belt-grinding[J].Aeronautical Manufacturing Technology, 2010: 32–37 (in Chinese) 

 

[13]朱心雄. 自由曲線曲面造型技術[M]. 北京: 科學出版社, 2000: 152-330

Zhu X X. Free curve and surface modelingtechnology[M]. Beijing:Science Press, 2000: 152-330 (in Chinese) 

  [14]何雪明, 孔麗娟, 何俊飛, 等. 基于三坐標測量機自適應測量的自由曲面逆向[J]. 機械工程學報, 2014, 50(15): 155–159  

  He X M, Kong L J, He J F, et al. Free-formsurface reverse based on CMM self-adapting measurement[J]. Journal ofMechanical Engineering, 2014, 50(15): 155–159 (in Chinese) 

  [15] Loney G C, Ozsoy T M. NC machining of free form surfaces[J].Computer-Aided Design, 1987, 19(2): 85–90DOI:10.1016/S0010-4485(87)80050-7 

  本文刊登于《機械科學與技術》2018年第37卷5期

  ① 凡本網注明"來源:磨料磨具網"的所有作品,均為河南遠發信息技術有限公司合法擁有版權或有權使用的作品,未經本網授權不得轉載、摘編或利用其它方式使用上述作品。已經本網授權使用作品的,應在授權范圍內使用,并注明"來源:磨料磨具網"。違反上述聲明者,本網將追究其相關法律責任。
② 凡本網注明"來源:XXX(非磨料磨具網)"的作品,均轉載自其它媒體,轉載目的在于傳遞更多信息,并不代表本網贊同其觀點和對其真實性負責。
③ 如因作品內容、版權和其它問題需要同本網聯系的,請在30日內進行。
※ 聯系電話:0371-67667020

延伸推薦

8月1日起,現金買黃金鉆石超10萬元需上報

“從業機構開展人民幣10萬元以上(含10萬元)或者等值外幣現金交易的,應當根據本辦法規定履行反洗錢義務?!薄翱蛻魡喂P或者日累計金額人民幣10萬元以上(含...

日期 2025-07-02   宏觀經濟

國家統計局:6月制造業PMI繼續回升,制造業景氣面有...

2025年6月30日國家統計局服務業調查中心和中國物流與采購聯合會發布了中國采購經理指數。對此,國家統計局服務業調查中心高級統計師趙慶河進行了解讀。6月份,制造業采購經理指數、非制...

日期 2025-07-02   宏觀經濟

棕剛玉需求難以回暖

貴州固鑫新材料有限公司位于貴州省黔西南州義龍新區龍廣鎮聯新村,投資總額為52,000萬元,占地面積約260畝,現有職工1,000多人,是一家集棕剛玉、鋯剛玉等新型耐火耐磨材料制品制...

日期 2025-07-02   行業動態

5月超硬材料及其制品出口量增價減

2025年1月至5月,我國超硬材料及其制品出口7.53萬噸,同比上漲13.19%;出口額7.26億美元,同比下跌14.46%;出口單價9.64美元/千克...

日期 2025-07-02   相關行業

快訊:本周國內碳化硅市場偏弱運行

本周國內碳化硅市場偏弱運行,現一級碳化硅塊料5500-5550元/噸,二級碳化硅塊料4600-4650元/噸,三級70碳化硅0-5mm主流價格3600元/噸,一級碳化硅市場下降10...

日期 2025-07-02   行業動態

玉立集團舉行主題黨日+“慶七一” 黨員干部學習會

為強化黨員理想信念,激發使命擔當,6月28日上午10時,玉立集團黨委在玉立酒店坤寧宮舉行了一場主題為“強黨性明黨紀守初心擔使命”的主題黨日+“慶七一”黨...

日期 2025-07-02   行業動態

習近平主持召開中央財經委員會第六次會議強調 縱深推進...

中共中央總書記、國家主席、中央軍委主席、中央財經委員會主任習近平7月1日上午主持召開中央財經委員會第六次會議,研究縱深推進全國統一大市場建設、海洋經濟高質量發展等問題。習近平在會上...

日期 2025-07-02   宏觀經濟

6月制造業PMI升至49.7%

國家統計局服務業調查中心、中國物流與采購聯合會6月30日發布的數據顯示,6月份,制造業采購經理指數、非制造業商務活動指數和綜合PMI產出指數分別為49.7%、50.5%和50.7%...

日期 2025-07-01   行業動態

2025年上半年大宗耐火原料市場運行回顧及下半年展望

2025年上半年,受市場需求低迷及成本支撐影響,大宗原料市場漲跌穩并行,整體市場不容樂觀。其中,剛玉市場先從高位滑落,后低位震蕩調整;電熔鎂砂成本支撐,價格上浮,需求不濟價格再下滑...

日期 2025-07-01   相關行業

國機精工:在金剛石散熱片等方面取得研究成果,實現小批...

7月1日,國機精工在互動平臺稱,公司在MPCVD合成金剛石方向上持續布局,在金剛石散熱片、光學窗口片等方面取得了諸多研究成果,并實現了小批量銷售。

日期 2025-07-01   企業新聞
主站蜘蛛池模板: 气泡膜机_气垫膜机_缠绕膜机_瑞安市优特机械厂 | 联系我们-99公司开户电话-99厅 | 自动隔油提升设备,消防稳压一体设备,苏州不锈钢消防水箱,污水提升设备厂家,无负压变频供水设备厂家-苏州脉泉供水设备有限公司 | 合金锤头_破碎机锤头_耐磨锤头_巩义市东辰铸造 高耐磨合金锤头厂家 | 铝合金线棒生产厂家-提供第三代精益管,防静电工作台定制与批发-宁波杰艾逖仓储设备有限公司 | 天津津腾,微孔滤膜,隔膜真空泵,针式过滤器-艾科仪器 | 三菱plc_触摸屏_变频器_欧姆龙plc_普洛菲斯_安川伺服电机-广州凌控 | 意优教育|意大利留学中介_意大利留学费用_意大利申请条件_北京意大利语培训学校 | 养殖污水处理设备厂家-废水处理设备-固液分离设备-诸城市赛瑞环保 | 深圳专卖店设计,餐饮空间设计,酒店空间策划设计【左右高端人文空间设计公司】 | 思源医疗器械网,雾化器厂家,医用床生产厂家,医疗器械厂家,医疗器械代加工 | 萍乡市信源电瓷制造有限公司--官网|萍乡市信源电瓷|萍乡电瓷厂|萍乡绝缘子-萍乡市信源电瓷制造有限公司 | 容积式换热器,半容积式换热器-绍兴市压力容器有限公司 | 微机保护装置_发电机保护_变压器保护_逆功率保护_防孤岛保护装置_光伏发电_杭州继保电气集团有限公司 | 黄山市惠康膳食管理服务有限公司 - 官网首页| 洗车机-自动汽车洗车机-全自动洗车设备-全自动电脑洗车机-北京自然绿环境科技发展有限公司 | 土工膜_土工布_复合土工膜_山东土工膜生产厂家_山东路易达新材料有限公司 | 儒亚科技_磁悬浮天平,竞争吸附,高压热重,重量法高压,高压密度 | 凿岩机|操车设备|爬车机|三环链|伞钻|伞型钻机|中心回转抓岩机|往复式给煤机|滚轮罐耳|吊桶|钩头-济宁卓力工矿设备有限公司 | 小程序定制,小程序开发,北京小程序公司,网站建设,网站制作,北京网站建设,北京网站制作 | 智能一体化蒸馏仪_氨氮蒸馏仪_全自动智能蒸馏仪器厂家-那艾 | 衡水一体化污水处理设备|循环水旁滤器|加药装置|钢厂浊环净化装置|河北欧意科技集团有限公司 | 三相干式变压器|三相隔离变压器|上海盖能电气有限公司官方网站|上海干式变压器生产厂家 | 耐腐蚀磁力泵,直立式耐酸碱泵,立式耐酸碱泵,自吸式耐酸碱泵-杰凯泵业【官网】 | 深圳-广州-惠州-东莞-重型货架-悬臂-轻中型货架-深圳市诺普泰仓储设备有限公司 | 展馆周边酒店_会展中心附近酒店_展览旅游酒店预订官网-盟友云 | 长春互联网运营值选星广传媒,长春短视频运营,长春新媒体运营,长春互联网运营,长春抖音运营,吉林视频号代运营,吉林快手代运营,短视频推广公司,公众号运营,微博运营,新媒体运营 | 潍坊铝单板_铝方通及氟碳喷涂材料供应企业-潍坊冠杰金属制品有限公司 | 提供专业.全面.优质的壁炉服务-莫洛尼官方网站moloney | 自动化贴标机_套标机_圆瓶贴标机厂家_大为机械 | 济南德固机械|膨化食品生产线|早餐谷物玉米片生产线|拉丝蛋白生产线|速食米饭生产线 | 双合金_注塑机_螺杆|炮筒|料管|料筒-广东海驰德塑胶机械有限公司 | 吸音板_隔音板多少钱_降噪声学材料_环保阻燃防火_吸声装饰工程定制_厂家价格直供 - 佛山天阶声学材料厂 | 手动叉车|电动搬运车|电动升降平台-牛力机械制造有限公司官网 | 无铅锡膏,无铅锡膏厂家,有铅锡膏厂家,高温锡膏厂家,环保锡丝,贴片红胶-东莞市科舜电子科技有限公司 | 铸铁型材_灰铁棒_球铁棒_圆铁棒生产厂家★河北起昌精密装备制造有限公司 | 沼气池-沼气设备-沼气工程-山东达禹环境工程有限公司 | 精密机械加工_零件加工_机械零部件加工厂_高精密零件加工定制—深圳精密机械加工厂 | 行情网 - 钢材行情,金属行情,废金属行情,农产品行情,化工行情,水泥行情 | 互动投影_全息投影_提供一站式互动投影解决方案_水滴石科技 | 陕西西安升降机_导轨式升降货梯_电动固定剪叉式升降平台_甘肃兰州液压机械厂家 |